
CLEAR Cryptosystem TM

User Manual ©

Quantum Knight, Inc.

Contents

Contents i
Preface . ii

1 Quick Start Guide 2

2 Command-Line Interface 5

3 SDK Integration 8
3.1 License Configuration . 9
3.2 Understanding Keys . 10

Key Strengths . 10
System-Generated Keys . 12
User-Generated Keys . 12
User-Supplied Keys . 13

3.3 Inspecting Results . 14
3.4 Operating Modes . 15
3.5 String-Based Encryption . 16
3.6 File-Based Encryption . 18
3.7 Stream-Based Encryption . 20

4 Advanced Topics 25
4.1 KeyTool and Access Control Lists . 25
4.2 Operating Modes . 26

Headerless Operation . 26
HMAC . 27
FIPS Compliance . 28

4.3 Hyperkeys . 30
KeyTool . 31

4.4 Pluggable Random Number Generators 34

i

Preface

This document provides detailed instructions for using the CLEAR Cryptosystem
(“CLEAR”).

In a world where advances in quantum computing will soon render traditional crypto-
graphic algorithms like AES and RSA obsolete, CLEAR provides post-quantum security
starting at 512-bit strength, going all the way up to 10,240-bit key sizes. CLEAR has
received NIST certification and is both FIPS-140-2 and GOOSE compliant. This means
that you can trust the peer-reviewed mathematics underpinning CLEAR with absolute
confidence.

CLEAR fundamentally is a symmetric cipher, allowing for the encryption and decryption
of strings, files and streams (arbitrary binary data). While historically developers have
had to choose between strength and performance, CLEAR operates in single milliseconds
with a low 400 kB footprint, making it suitable even for devices, IoT and industrial
usage. We have demonstrated the ability to stream 8K video with minimal loss of frames
per second even at key sizes of up to 5,120-bit.

To leverage CLEAR, the bundle you have downloaded contains both a command-
line interface, useful for scripting and learning about the various modes available for
encryption and decryption, as well as a full software development kit (SDK) and an
intuitive Java-based API for integrating with your systems, devices and services.

Quantum Knight, the developers of CLEAR, believe in a world where security and
performance do not have to be traded-off against one another, in a world where cryptog-
raphy is both easy and fun to use, and in a world that remains secure even as quantum
computers grow ever more powerful and commonplace. Stay safe, and stay secure!

ii

How long do you want these messages to remain secret?
I want them to remain secret for as long as men are capable of evil.

Neal Stephenson, Cryptonomicon

1

1 Quick Start Guide

This guide will quickly introduce you to the command-line interface options for installa-
tion, as well as encryption and decryption. For those wishing to integrate with the Java
SDK, string-based, file-based and stream-based examples are provided. Please read the
remainder of the documentation for additional details.

CLI: Validate Installation/Show Help

%java -jar clear.jar

CLI: Register for Trial/Activate License

%java -jar clear.jar -license

CLI: Encrypt a File

%java -jar clear.jar -encrypt <cleartext_file> {options}

CLI: Decrypt a File

%java -jar clear.jar -decrypt <encrypted_file> <keyfile> {options}

CLI: Additional Options for Encryption

-hmac (Uses AEAD Encryption Authentication with HMAC)

-compliance (Runs with FIPS 140-2 Compliance Mode)

-rng (Use pluggable random number generator provider)

-bit <strength in bits (defaults to 512)>

2

SDK: Encrypt and Decrypt a String

CLEARResult result = CLEAR.clearString().encrypt(

someString,

512,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY

);

CLEAR.clearString().decrypt(

result.getCipherTextString(),

result.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY

);

SDK: Encrypt and Decrypt a File

CLEARResult encrypted = CLEAR.clearFile().encrypt(

someFile.getAbsolutePath(),

512,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY

);

CLEARResult decrypted = CLEAR.clearFile().decrypt(

encrypted.getCipherTextFile(),

encrypted.getKeyFile(),

StreamingDecryptionMode.STREAMING_KEY

);

SDK: Encrypt and Decrypt a Stream

CLEARResult encrypted = stream.encryptStart(

someString.getBytes(),

512,

StreamingEncryptionSysGenKeyMode. STREAMING_SYSTEM_GEN_KEY,

true

);

CLEARResult decrypted = stream.decryptStart(

encrypted.getCipherText(),

encrypted.getKeyMaterial(),

StreamingDecryptionMode.STREAMING_KEY,

true

);

3

There are two kinds of cryptography in this world: cryptography that will stop your
kid sister from reading your files, and cryptography that will stop major governments

from reading your files.

Bruce Schneier

4

2 Command-Line Interface

CLEAR is Quantum Knight’s next generation cipher, protecting data at rest and in
transit on any device with a Java Runtime or Virtual Machine. CLEAR is most easily
approached starting with the command-line interface (CLI). Here, you may encrypt and
decrypt local filesystem resources. For each command invocation, a number of operating
modes are available. This chapter will briefly cover the basic CLI operations. To learn
in detail about available additional modes, please refer to ”Advanced Topics: Operating
Modes”.

Validating the Installation

As a prerequisite, ensure that your system contains a Java runtime of version 8 or higher.
You can validate that you have Java on your path via:

% java -version

java version "17.0.6" 2023-01-17 LTS

Java(TM) SE Runtime Environment (build 17.0.6+9-LTS-190)

Java HotSpot(TM) 64-Bit Server VM (build 17.0.6+9-LTS-190, mixed mode, sharing)

If your environment does not have a working version of Java, download a Java Runtime
Environment for your platform at:
https://www.java.com/en/download/.

Navigate to the directory where you installed CLEAR. You should see a version of the
application (for this document, we will use 1.2.1.5). When typing your own commands
into the shell, be sure to use the name of version installed (e.g., clear 1.2.1.5.jar). To
validate that the application is working:

% java -jar clear.jar

Simply running CLEAR with no parameters will bring up a help page and indicate the
status of your license. CLEAR will always perform decryption. A license is only required
to perform encryption once the 30-day trial period has ended.

Obtaining a License

We will now activate our 30-day trial period. During this time, you may freely encrypt
and decrypt via both the CLI and the SDK.

%java -jar clear.jar -license

Now follow the on-screen prompts to activate your trial period. Once the 30-day trial
period where you may freely use application (both CLI and the Java SDK) ends, you
will need to purchase a license to continue encrypting resources. Place the downloaded
license in the same directory as the CLEAR executable. Then, you can activate the
license via:

5

https://www.java.com/en/download/

%java -jar clear.jar -license

...

LICENSED TO: John Doe

john.doe@foo.bar

LICENSE: MONTHLY - CLEAR FULL-FEATURED - 10240 BIT

EXPIRES: 07-08-2023

As the text above indicates, CLEAR is now licensed and fully functional. If you
encounter issues with the registration process or use of your license, please contact
help@quantumknight.io.

File-Based Encryption

We will start with encrypting a file. However, CLEAR supports the normal range of
operating system redirects (for standard out) and pipes as well. CLEAR will generate
two artifacts: the encrypted result and the system-generated key that will be used for
decryption. The general format used for encryption is:

%java -jar clear.jar -encrypt <cleartext_file> {options}

To start with a simple encryption of a file readme.txt using CLEAR’s default key-size of
512 bits:

% java -jar clear.jar -encrypt readme.txt

Strength Level: 512

% ls -l

total 16640

-rw-r--r--@ 11184 Apr 10 13:44 CLEAR.LIC

-rw-rw-r--@ 404057 Mar 17 10:32 clear_1.2.1.5.jar

-rw-r--r-- 13 Apr 24 08:36 readme.txt

-rw-r--r-- 6164 Apr 24 08:36 readme.txt.ckey

-rw-r--r-- 21 Apr 24 08:36 readme.txt.clear

The application performed the encryption and output two files: readme.txt.ckey (the
system-generated key) and readme.txt.clear (the encrypted file). Note that the ciphertext
is 8 bytes longer than the plaintext, with the additional data residing in a header stored
in the ciphertext.

%java -jar clear.jar -decrypt readme.txt.clear readme.txt.ckey

%cat readme.txt

Hello World!

As can be seen from the two examples above:

Encryption requires at least a single parameter: the plaintext to encrypt.

Decryption requires at least two parameters: the ciphertext to decrypt and
the key to use.

6

If privacy is outlawed, only outlaws will have privacy.

Philip Zimmermann

7

3 SDK Integration

CLEAR provides a robused Software Development Kit (SDK) to integrate cryptography
with your Java services, applications and devices. The SDK provides three separate
higher-level abstractions to work with keys and ciphers:

• String API: encrypts and decrypts UTF-8 data while leveraging base-64 encoding
to ensure ciphertext remains a valid string.

• File API: encrypts and decrypts individual files. Since files may contain binary
data, the encrypted result will not have base-64 encoding performed.

• Stream API: encrypts and decrypts binary data from any source representable
as a byte array. As with the files API, no base-64 encoding occurs.

All three APIs will utilize CLEAR’s HyperKey technology. In order to understand the
common principles between all three interfaces, we will first explore how HyperKeys,
CLEAR’s patented symmetric keys, operate and the different ways in which you will
generate a key.

We will then proceed to dive into the CLEARResponse object to understand which fields
to use to extract the return value from an encryption or decryption. Finally, we will
briefly explore the various operating modes, which control what additional features will
be used for a given operation.

With that foundational understanding in hand, we will demonstrate encryption and
decryption for all three interfaces: Strings, Files and Streams. (This is when we will get
to the fun part: coding!)

8

3.1 License Configuration

In order to encrypt, you must have a valid CLEAR license (either trial or paid). Decryp-
tion is always allowed regardless of license status. CLEAR will look for your license in
the following locations:

1. In the same directory as the clear.jar file

2. At the location specified by the CLEAR_LIC environment variable

The preferred method to fix the location of the license is to specify the CLEAR_LIC

environment variable. However, if you package CLEAR within a WAR file or similar
methodology, then place the license in the same directory as clear.jar. When debugging
or running in your IDE, you can normally create a run configuration that passes
the CLEAR_LIC variable directly if you do not have permissions to modify the global
environment variables on your system.

You must specify the actual license file and not a directory when using the environment
variable approach.

Note: If you inspect the result of encryption or decryption, and the CLEARResult

that is returned contains all null values, then your license file could not be
located. You can easily debug this by adding a call to System.getenv() to see
if or where it has been set.

9

3.2 Understanding Keys

CLEAR’s patented technology for symmetric keys is known as a HyperKey. Traditional
cryptographic keys solely contain the data required to encrypt or decrypt a message.
However, CLEAR keys also may contain additional metadata beyond the initialization
vector, salt and entropy required for encryption and decryption:

• Multi-factor authentication data, from a hardware token, a biometric, etc.

• HMAC data utilized to authenticate a given message.

• Access control lists (paired with MFA) to allow different principals to decrypt
different portions of the ciphertext.

Note: some features listed above require additional options enabled on your
CLEAR license. Please contact your administrator or Quantum Knight to
inquire.

Encryption will normally generate both the ciphertext from the specified plaintext as
well as a key to later utilize for decryption.

Key Strengths

Higher key strengths typically correspond to both stronger security and longer processing
time. A traditional algorithm exhibits O(n2) performance, meaning doubling the key
size leads to an exponential increase in the time required for encryption or decryption.
CLEAR, in contrast, operates in O(n log n) performance. As key sizes increase, the total
time required for a given operation still increases, but the performance improves relative
to the larger key size.

When selecting a given key strength, higher is not always better. You should analyze the
following characteristics when choosing a size, as performance often will be a consideration
as well as security:

• How long will the data need to be secure? Data in transit normally has a lower need
for protection than data at rest. The longer the data needs to remain encrypted,
the higher the key size you should use.

10

• What type(s) of adversary must you defend against? All sorts of attackers from
script kiddies, commercial competitors, organized crime syndicates to nation states
will present different levels of sophistication and resources. The greater the threat,
the higher the key size.

• What damage would occur if the information was disclosed? Forms of damage
include reputational, financial, criminal and others. As the level of consequences
increases, so should the your key strength.

To assist in choosing your key size, the following table roughly illustrates the typical use
case based on a simple rubric:

Method Purpose

512 Post-quantum strength data at rest

1,024 Commerial post-quantum strength for data at rest

2,048 Military-grade post-quantum strength

5,120 Intelligence agency strength

10,240 Maximum strength suitable for protecting data for decades

The above examples show the relative strength and provide some guidance for a given key
size. However, when possible, analyze the time the data will need to remain secure, the
types of adversary you are guarding against and the scope of damage you are attempting
to mitigate.

Traditional symmetric ciphers utilize 256-bit keys (sometimes up to 512 but
with significant performance penalties). Asymmetric ciphers have higher
key-sizes (2,048 or 4,096) but cannot encrypt large amounts of data and
cannot be directly compared to a symmetric key size. For example, AES
256-bit will typically secure data better than RSA 4,096.

CLEAR’s 512-bit strength will guarantee quantum-resilience while
having better performance than a traditional cipher.

11

CLEAR allows several ways to utilize and generate keys. These fall into three principal
categories: system generated keys, user-supplied keys and user-generated keys. The
enum com.clear.cryptosystem.CLEARMode specifies the allowable operations and key modes
that one may utilize.

System-Generated Keys

System-generated keys occur at encryption time. CLEAER will generate a new random
key, use that to encipher the plaintext and then return both the ciphertext and the
generated key in the CLEARResult . A typical use case would be to then store the ciphertext
along with the encrypted data, while putting the generated key in separate storage (or
ideally a key vault) to be used for subsequent decryption. CLEAR does not offer a key
vaulting solution interally, as so many good options already exist in the market.

The CLEAR interface is designed for ease of use and minimal required coding. The gener-
ation of entropy (randomness) in Java is frequently accomplished using the SecureRandom

class for what is deemed to be cryptographically secure random number generation,
capable of producing random integers as well as binary byte-array sequences. In the
default configuration, the Java implementation of CLEAR also utilizes Java SecureRandom

for its system-generated encryption keys.

System-generated keys do not require a user-defined key or password to function. CLEAR
will automatically generate strong entropy with the aforementioned cryptographically
secure random number generator (CSRNG) as the starting place for all encryptions.
Like other symmetric algorithms, CLEAR’s keys are internally constructed in way that
incorporates an initialization vector, a salt, and a secret key vector. Each of these
precursory artifacts are made directly from a series of 64-bit long integers, produced
directly by CSRNG as their source of entropy. For additional detail on the inner-
workings and mechanics of CLEAR encryption, please see our white paper available at
https://quantumknight.io.

User-Generated Keys

User-generated key encryption will take a user’s password and blend it with pseudo-
randomly generated numbers to create sufficient entropy to generate 512 bits of key
space. While the minimum amount of data required to generate a UGK is one single
character, the Quantum Knight team recommends providing MFA data that is at least
as long as the bit strength of the encryption operation. Like system-generated keys
(above), CLEAR will return both the ciphertext and the key derived from the password
in a CLEARResult.

Further, CLEAR does not prevent large amounts of UGK data as an input parameter,
however; the use of very large UGK Material may be an unnecessary waste of system
memory resources.

As a best practice in symmetric cryptography, the Quantum Knight team recommends
against password reuse in encryption keys. As a form of “abstract” non-transactional
key exchange, the CLEAR UGK interface could be used to produce CLEAR-compatible
key material on two sides of an encryption sharing-schema if Alice and Bob were both
aware of a password and create their own private keys via UGK modes.

12

https://quantumknight.io

Regardless of the amount of entropy supplied (i.e., length of the password) or
the key size specified, user-generated keys are limited to 512-bit encryption
strength.

User-Supplied Keys

Real-world symmetric cryptography often implies the need for a User Supplied Key
(“USK”). Simply, this means that we can begin encryption (or decryption) with a
CLEAR HyperKey compliant format that has been produced earlier, and at a different
time than a specific encipherment operation.

Here’s an example:

As a CLEAR SDK developer, you are creating some code within a website or internet-
facing API that is used to tokenize strings whereby key-exchange or key-rotation is not
feasible or unnecessary to the security of your use-case.

As shown in the example above, there are scenarios whereby the use of a single encryption
key may be used to “blind” dynamic data so that it can be shared externally without
revealing the actual system state. The Quantum Knight team would like to convey that
proper key management and handling is foundational to the security of systems and
infrastructure.

The exhibit shown above in Figure-6 is only intended to illustrate a data transformation
with USK in the simplest terms and is not being presented as a strategy or security
recommendation. Tokenization of secure information in a well-managed environment is
a best practice.

In the case of SGK, the default onboard RNG can be used, or a plug-n-play random
number generators (RNG) can be used to provide cryptographic key entropy.

There are use-cases whereby creating a CLEAR encryption key (without performing
an encryption job) may be convenient, necessary, or specifically required to satisfy a
solution. For this reason, CLEAR provides “Key Tool” as a convenient utility feature
for generating stand-alone keys without performing an encryption operation. Keys can
be stored, used later, or applied specifically to new encryption jobs in lieu of generating
keys during the encryption process.

Additional detail and suggested use of User Supplied Keys (USK) is provided in [”Ad-
vanced Topics - KeyTool”].

13

3.3 Inspecting Results

CLEAR will output the results of encryption or decryption–regardless of string, stream
or file-based encryption–in a CLEARResult instance. As an example:

// Set to string-based encryption (thread-safe and may be reused)

CLEARString cs = CLEAR.clearString();

// Encrypt a string at 512-bit with a system-generated key

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_512_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY

);

We have encrypted a string using a system-generated key at 512-bit strength. Every call
to an encrypt() or a decrypt() method will return a CLEARResult. Let’s inspect the
details of what might be returned.

Type Target Method Returns Description

Encrypt

Strings getCipherTextString() String Encrypted string

Files getCipherTextFile() String URI of the encrypted file

Streams getCipherText() byte[] Encrypted binary data

All getKeyMaterial() String Key used

Decrypt

Strings getClearTextString() String Encrypted string

Files getClearTextFile() String URI of the decrypted file

Streams getClearText() byte[] Encrypted binary data

All getKeyMaterial() String Key used

To complete the example above, let’s decrypt the result that we earlier encrypted:

// Decrypt the string

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY

);

// Outputs "hello world"

System.out.println(decrypted.getClearTextString());

Note how we simply used the encrypted result from before when performing decryption.
In most nontrivial instances, the decryption does not occur in memory right after
encryption. In that case, you would pass the appropriate encrypted data and key
material directly to the function. The above illustrates how to inspect CLEARResult

from an encryption operation and a decryption operation. You would typically call the
getCipherText() , getCipherTextFile() or getCipherTextString() and store the encrypted
result somewhere. In addition, the key must be stored for subsequent decryption. Please
see ”Advanced Topics - Key Storage” for advice on properly safeguarding your keys.

The curious may have noticed two additional methods available in CLEARResult, namely
isHmacSegment() and getHmacSignature() . These methods are used when operating in
HMAC mode to verify the authenticity of an encrypted message. Please see section
”Advanced Topics - Operating Modes” for more details on HMAC.

14

3.4 Operating Modes

Keys may be generated and used in a variety of different operating modes. All keys
perform encryption and decryption. However, keys may also include second-factor (2FA
or biometric) data when operating in HMAC mode, guaranteeing the authenticity of a
given message. Keys may also operate in FIPS-140-2 compliance mode (see ”Advanced
Topics - Operating Modes” for more details). And finally, keys may include both HMAC
and FIPS compliance operation.

A given key will normally contain a header. Headers are required for HMAC and FIPS
compliance use. However, when these additional features are not required, and the
encryption is occurring in a resource-constrained environment (for example. a camera, an
industrial sensor or a commercial IoT device, etc.), CLEAR can operate in ”Headerless”
mode, whereby the ciphertext will not contain a header. When utilizing the File and
Streaming interfaces, the ciphertext will have the same size as the plaintext. (Strings
will have Base-64 encoding applied and hence change the ciphertext length regardless of
Headerless operation). Another use case for this feature is encrypting database columns,
as there is no need to expand the column size to accommodate the additional 8kB a
header will normally add to the encrypted result.

Mode Description

Key Standard key for encryption and decryption

Headerless Key without any header information

Compliance Mode Key operating in FIPS-140-2 compliance mode.

HMAC Key with HMAC embedded

HMAC and Compliance Key with HMAC embedded in FIPS compliance mode

CLEAR supports the above operating modes for three separate key modes: system-
generated keys, user-generated keys and user-supplied keys. Note that all the key modes
that follow pertain to encryption. Decryption either uses the header to determine the
appropriate mode to use or operates in Headerless mode (where HMAC and FIPS
compliance do not pertain).

We will start with basic encryption and decryption. For those interested in the addi-
tional modes of Headerless, compliance and HMAC (or their permutations), please see
”Advanced Topics - Operating Modes”.

15

3.5 String-Based Encryption

The String interface is a convenience method built on top of the root binary interface and
is designed to make encrypting textual data more convenient. Additional convenience
(for Strings) is achieved via the incorporation of UTF-16 encoding of cleartext binary
input and Base64 encoding of binary ciphertext output. UTF-16 Unicode character
encoding widens all characters to 2 bytes to support multiple languages and advanced
character-sets. In this way, data encrypted using the String interface will result in a
ciphertext that is larger (in byte size) than the original. If looking to achieve encryption
that is the same size as the original, please utilize the CLEAR streaming interface whereby
you may directly encrypt byte arrays or the File interface for filesystem resources.

// Set to string-based encryption (thread-safe and may be reused)

CLEARString cs = CLEAR.clearString();

// Encrypt a string at 512-bit with a system-generated key

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_512_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY

);

As illustrated by the example above, CLEAR String encryption requires only two
lines of code in all cases. In the following sections we will explore the various input
parameters, response outputs, and unique modes of operation available with CLEAR
String encryption. String encryption is intended for use within online applications,
messaging systems, and anywhere that unique and strong protection of textual data
or tokenization is required. String Encryption provides various methods for applying
security to text in a highly performant manner.

Now, let’s decrypt the result above. The code below will only focus on the decryption
portion to demonstrate that again only a single line of code is required to implement:

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY

);

When operating in ”Headerless ”mode, CLEAR omits the 8 bytes normally prefixed to a
given ciphertext (see ”Advanced Topics - Headerless Operation” for details). This mode
would be suitable for operating in an IoT, device, camera or other resource-constrained
environment. Normally, Headerless also makes an ideal use case for database column
encryption. However, since the String API encodes encrypted results as Base-64, the
ciphertext will always be larger than the plaintext.

CLEARResult encrypted = cs.encrypt(

"Foo bar",

CLEAR.STRENGTH_2048_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY_HEADERLESS

);

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY_HEADERLESS

);

16

Note above the new mode passed into the encryption method to avoid writing a header.
Since CLEAR expects a header by default, the decryption step also includes a mode
indicating no header will be present.

CLEAR has an operating mode that embeds an HMAC. The HMAC will be directly
embedded int the HyperKey and would normally be utilized to verify the authenticity of
a message. For example, to confirm that an email had not been tampered with. Here is
an example of encrypting and decrypting with an HMAC:

CLEARString cs = CLEAR.clearString();

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_2048_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY_WITH_HMAC

);

CLEARResult decrypted = cr = cs.decrypt(

decrypted.getCipherTextString(),

decrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY

);

Note how the new mode SINGLE_JOB_SYSTEM_GEN_KEY_WITH_HMAC was utilized during encryp-
tion. HMAC requires a header to be present, so this mode (and compliance mode) cannot
be used in Headerless operation.

CLEAR may also operating a mode enforcing FIPS-140-2 compliance, as well as a mode
including both an HMAC and FIPS. Please see ”Advanced Topics - Operating Modes”
for details.

17

3.6 File-Based Encryption

The File interface is a convenience method built on top of the root binary interface and
is designed to make encrypting filesystem resources more convenient. CLEAR can a
file on any system that can host a JVM. Note that only individual files and not folders
are covered by this API. You may choose to write a small amount of code to traverse a
directory if you need to encrypt all the contents, each outputting an encrypted file, or
you may choose to compress, ala ZIP, the folder into a single encrypted resource.

File file = new File("./test_file");

CLEARFile cf = CLEAR.clearFile();

CLEARResult encrypted = cf.encrypt(

file.getAbsolutePath(),

CLEAR.STRENGTH_2048_BIT,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY

);

File encryptedFile = new File(encrypted.getCipherTextFile());

CLEARResult decrypted = cf.decrypt(

encrypted.getCipherTextFile(),

encrypted.getKeyFile(),

StreamingDecryptionMode.STREAMING_KEY

);

File decryptedFile = new File(decrypted.getClearTextFile());

Whereas the Strings interface is obtained by a call to CLEAR.clearString() , accessing

a reference to the File interface instead uses CLEAR.clearFile() . Also node that the
File API does not have dedicated enums for specifying the operating mode. Rather,
it leverages the Stream API under the hood to perform the encryption to achieve
low-memory overhead, even when encrypting or decrypting an arbitrarily large file.

Note that the File API uses a String (representing the URI of the file) rather
than a java.io.File instance.

Similarly to the Strings interface, File supports Headerless and HMAC operation. Ex-
amples of both follow:

18

// Headerless operation

File noHeader = new File("./test_file_headerless");

CLEARResult encryptedNoHeader = cf.encrypt(

noHeader.getAbsolutePath(),

CLEAR.STRENGTH_512_BIT,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY_HEADERLESS);

CLEARResult decryptedNoHeader = cf.decrypt(

encryptedNoHeader.getCipherTextFile(),

encryptedNoHeader.getKeyFile(),

StreamingDecryptionMode.STREAMING_KEY_HEADERLESS

);

// HMAC operation

File hmac = new File("./test_file_hmac");

CLEARResult encryptedHmac = cf.encrypt(

hmac.getAbsolutePath(),

CLEAR.STRENGTH_512_BIT,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY_WITH_HMAC

);

CLEARResult decryptedHmac = cf.decrypt(

cr.getCipherTextFile(),

cr.getKeyFile(),

StreamingDecryptionMode.STREAMING_KEY

);

In each example above, the relevant mode is passed to the encryption step. For Headerless
decryption, no header exists in the ciphertext, CLEAR must be told to expect a Headerless
file. In HMAC decryption, the header does exist and will automatically indicate that an
HMAC is present for decryption.

19

3.7 Stream-Based Encryption

The Stream API allows for lower-level encryption of byte arrays (binary data). Both the
File and String APIs in effect are convenience wrappers on top of the Stream SDK. A
typical use case for streaming is to process large amounts of data (say, from a web socket
or the filesystem) in a performant, low-memory fashion. Note that while the Stream API
is extremely powerful and flexible, it also adds additional complexity to your code. As
such, in this chapter, we will write some convenience wrappers that demonstrate typical
stream usage with Java’s InputStream and OutputStream.

When encrypting a stream, the following steps will normally occur:

1. Invoke a starting operation for the first packets

2. Invoke a continue operation for the next several packets

3. Invoke a finalize operation for the last packet

CLEAR utilizes a separate method to start encryption or decryption, and the same
method for continuing and finalizing the stream. You differentiate between the two with
a boolean ’terminate’ flag (set to false when continuing and to true when finalizing).

If you are simply encrypting or decrypting a relatively small amount of data (that would
fit comfortably in memory), you can use a simple set of operations to encrypt and decrypt
using minimal code. This use case will look very similar to the String and File examples
above:

byte[] bytes = "Hello World".getBytes();

CLEARStream cs = CLEAR.clearStream();

CLEARResult encrypted = cs.encryptStart(

bytes,

CLEAR.STRENGTH_512_BIT,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY,

true

);

CLEARResult decryptedNoHeader = cs.decryptStart(

encrypted.getCipherText(),

encrypted.getKeyMaterial(),

StreamingDecryptionMode.STREAMING_KEY,

true

);

System.out.println(new String(decrypted.getClearText()));

Since we passed the final termination flag as true for both startEncryption() and

startDecryption() , only a single line of code is required to encrypt or decrypt. Normally,
streams will contain more data than will scale in memory, and a more complicated use
of the Stream API will be needed. To explore how to handle these use cases, let’s write
wrappers that utilize traditional Java InputStream and OutputStream .

Encryption

Let’s now explore our wrapper class:

20

import com.clear.cryptosystem.*;

import com.clear.cryptosystem.CLEARMode.*;

import java.io.*;

public class CLEAREncrypter {

private final int keySize;

private final StreamingEncryptionSysGenKeyMode mode;

public CLEAREncrypter(int keySize, StreamingEncryptionSysGenKeyMode mode) {

this.keySize = keySize;

this.mode = mode;

}

public CLEARResult encrypt(InputStream in, OutputStream out)

throws IOException {

CLEARStream cs = CLEAR.clearStream();

byte[] buffer = new byte[64];

int bytesRead = in.read(buffer);

CLEARResult header = null;

if (bytesRead > -1) {

header = cs.encryptStart(buffer, keySize, mode, false);

out.write(header.getCipherText());

bytesRead = in.read(buffer);

}

while (bytesRead > -1) {

byte[] clearBuffer = new byte[bytesRead];

System.arraycopy(buffer, 0, clearBuffer, 0, bytesRead);

boolean terminate = bytesRead < buffer.length;

CLEARResult result = cs.encryptContinue(clearBuffer, header.getJobNumber

(), mode, terminate);↪→
out.write(result.getCipherText());

bytesRead = in.read(buffer);

}

out.flush();

return header;

}

}

As can be seen above, the utility class that we have written above is initialized with
a key strength and key generation mode. This type can be reused across threads and
invocations. The encrypt() method takes an InputStream containing the plaintext and

an OutputStream that will receive the ciphertext. Note for the first packet, we invoke

encryptStart() . For all other packets except the last, we utilize encryptContinue() with
the terminate flag set to false. Finally, we end the encryption on the last packet with
encryptContinue() and the terminate flag set to true. The final call to flush() ensures

the OutputStream receives all the encrypted bytes. (Most implementations implicitly call

flush() on close() , but there is no harm being explicit).

Decryption

Now, let’s see how decryption works:

21

import com.clear.cryptosystem.*;

import com.clear.cryptosystem.CLEARMode.*;

import java.io.*;

public class CLEARDecrypter {

private final String keyMaterial;

private final StreamingDecryptionMode mode;

private final long jobNumber;

public CLEARDecrypter(final String keyMaterial, StreamingDecryptionMode mode,

final long jobNumber) {↪→

this.keyMaterial = keyMaterial;

this.mode = mode;

this.jobNumber = jobNumber;

}

public void decrypt(InputStream in, OutputStream out)

throws IOException {

CLEARStream cs = CLEAR.clearStream();

byte[] buffer = new byte[64];

int bytesRead = in.read(buffer);

CLEARResult header = null;

if (bytesRead > -1) {

header = cs.decryptStart(buffer, keyMaterial, mode, false);

out.write(header.getClearText());

bytesRead = in.read(buffer);

}

while (bytesRead > -1) {

byte[] clearBuffer = new byte[bytesRead];

System.arraycopy(buffer, 0, clearBuffer, 0, bytesRead);

boolean terminate = bytesRead < buffer.length;

CLEARResult result = cs.decryptContinue(clearBuffer, header.getJobNumber

(), mode, terminate);↪→
out.write(result.getClearText());

bytesRead = in.read(buffer);

}

out.flush();

}

}

Decryption works in a nearly identical fashion to encryption with calls to decryptStart() ,

decryptContinue() with terminate set to false and finally decryptContinue() with finalize
set to true. Whereas we passed in the key size and mode to for encryption, decryption
instead requires the key material to use and a mode.

Job Numbers and Key Materials

One subtlety that may not be apparent in the code examples above is the use of job
number and key material and when to retrieve them. CLEAR will populate both
the initial job number (one for encryption and one for decryption) during the calls to
encryptStart() and decryptStart() . Your code will in the decryption phase need to
resupply the correct job number during invocation. You can retrieve the job number
from getJobNumber() .

In addition, the very first CLEARResult from encryptStart() will contain the generated

key to use for decryption (if you are using system-generated key mode). You will need

22

to store that key for later use when decrypting. Here is an example putting are helper
classes to use to encrypt and then decrypt a file while streaming:

public static void main(String... args) throws IOException {

CLEARResult result = null;

File source = new File("clear-java.iml");

File encrypted = new File("clear-java.iml.clear");

File decrypted = new File("clear-java.iml.copy");

try(FileInputStream in = new FileInputStream(source);

FileOutputStream out = new FileOutputStream(encrypted)) {

CLEAREncrypter encrypter = new CLEAREncrypter(

512,

StreamingEncryptionSysGenKeyMode.STREAMING_SYSTEM_GEN_KEY

);

result = encrypter.encrypt(in, out);

}

try(FileInputStream in = new FileInputStream(encrypted);

FileOutputStream out = new FileOutputStream(decrypted)) {

CLEARDecrypter decrypter = new CLEARDecrypter(

result.getKeyMaterial(),

StreamingDecryptionMode.STREAMING_KEY,

result.getJobNumber()

);

decrypter.decrypt(in, out);

}

}

The code above happens to encrypt the VS Code configuration file in the same envi-
ronment as the helper classes, but this could be any arbitrary file (or stream, for that
matter). Note how the result returned from the encryption step contains both the key
material and the job number to pass to the decryption step.

Note that the Stream API also supports Headerless, HMAC, FIPS Compliance and
HMAC with FIPS Compliance modes, just like the String and File APIs (see ”Advanced
Topics - Operating Modes” for details).

Congratulations! You can now use some of the strongest, fastest, and (with streaming)
lowest memory overhead cryptography on the planet.

23

Random numbers should not be generated with a method chosen at random.

Donald Knuth

24

4 Advanced Topics

4.1 KeyTool and Access Control Lists

KeyTool generates standalone keys outside of an encryption operation. This use case
occurs frequently in systems that need to generate keys that will subsequently be used for
multiple encryption and decryption operations. KeyTool instances, which are thread-safe,
are obtained from the CLEAR factory, just as the String, File and Streaming interfaces
are obtained. Below is a demonstration of common KeyTool operations:

String password = ...

byte[] material = ...

// Obtain a reference to the KeyTool generator

CLEARKeyTool keyTool = CLEAR.clearKeyTool();

// Create a user-supplied key directly

String usk = keyTool.genKey(512);

// Create a user-supplied key with multi-factor material

String uskMFA = keyTool.genKeyWithMFA(512, material);

// Create a user-generated key from a password

String ugk = keyTool.genUGK(password);

// Create a user-generated key from a password and MFA

String ugkMFA = keyTool.genUGKWithMFA(password, material);

Note that KeyTool also contains a number of convenience methods to generate
keys and access control lists from files rather than programmatically. This
allows for scripting key and ACL generation in bulk. Please refer to the
Javadocs for detailed information.

25

4.2 Operating Modes

CLEAR allows for several additional operating modes beyond standard encryption and
decryption. Your license may or may not allow for the use of these additional features.
If you would like to upgrade to leverage these additional modes, please contact Quantum
Knight sales for details.

Headerless Operation

The CLEAR default mode of operation will produce a ciphertext that is only eight [8]
bytes larger than the original data. When running in HMAC mode, the total additional
encumbrance to ciphertext is eighty [80] bytes.

Adding 8 bytes of data to something might not seem like much. If you are encrypting a
3GB file, would you really notice an additional 8 bytes?

If your data comes from a small IoT sensor and is only sending packets of 16 bytes, then
adding 8 more bytes could be a really impactful matter. This is why we have “CLEAR
Headerless Mode.”

Encrypting data in CLEAR Headerless Mode adds exactly zero [0] additional bytes of
overhead to ciphertext, making it ideal for use with sensors and IoT/IIoT devices. As a
caveat, Headerless Mode encryptions cannot be combined with HMAC/AEAD signed
encryptions (see below).

Encrypting in Headerless Mode

Encrypting a String in Headerless mode is almost identical to encrypting in standard (ba-
sic) mode. To use Headerless mode during encryption, select SINGLE_JOB_SYSTEM_GEN_KEY_HEADERLESS

for the mode selection.

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_512_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY_HEADERLESS

);

Encryption in Headerless mode is intended for environments (like IoT) where eight
additional bytes of data encumbrance is problematic or material to a use case. Even
in large database environments where one might not necessarily view eight bytes as a
material concern; strategies that use CLEAR to encrypt every VARCHAR in a database
may elect to use Headerless mode when every character matters.

Important note: In cases (like IoT) where each bit of data is counted and
padding is infeasible, the Quantum Knight team recommends using CLEAR-
Streaming SDK (also in Headerless mode). CLEAR-String SDK will add space
to ciphertext by way of UTF-16/Unicode and Base-64 encoding of String data.
The byte[] binary interface in CLEAR-Streaming SDK allows for ciphertext
that exactly equals the original plaintext length.

Decrypting in Headerless Mode Decrypting a String that was encrypted in CLEAR
Headerless mode requires decryption in Headerless mode as well. Failure to match

26

modalities in encryption and decryption will result in a failure to decrypt. To indicate
this for the deciphering portion, specify SINGLE_JOB_KEY_HEADERLESS .

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY_HEADERLESS

);

Since Headerless mode, by definition, has no header in the ciphertext, HMAC and
Compliance modes cannot be used. See below for details on both.

HMAC

CLEAR incorporates Authenticated Encryption with Associated Data (“AEAD”) with
Hash based Message Authenticate Code (”HMAC”) as a mechanism that supports a
form of signed encryption that is resistant to malicious injection and tampering. AEAD
is a variant of Authenticated Encryption (“AE”) that allows a recipient to check the
integrity of both the encrypted and unencrypted information in a message. AEAD
binds associated data (AD) to the ciphertext and to the context where it is supposed to
appear so that attempts to ”cut-and-paste” a valid ciphertext into a different context
are detected and rejected.

During decryption operations, signed AEAD/HMAC authentication will compare the
HMAC found near the prefix of the ciphertext with a freshly generated HMAC that
is produced by decryption. If the Message Authentication Codes (“MAC”) do not
match exactly, then the signature is determined to be invalid and thus implies a possible
tampering of the ciphertext.

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_512_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY_WITH_HMAC

);

Encrypting in HMAC with AEAD is almost identical to encrypting in standard (basic)
mode.

To use HMAC during encryption, select SINGLE_JOB_SYSTEM_GEN_KEY_WITH_HMAC for the mode
selection.

Important note: Encrypting in HMAC mode requires more computational
overhead than non-HMAC based encryptions. HMAC Mode will add 72 bytes
of additional data to the ciphertext output.

Decrypting a String that was encrypted in HMAC mode is entirely identical to the
standard decryption operations described previously. CLEAR automatically detects
HMAC in the ciphertext header and will attempt to validate HMAC authentication
whenever it exists.

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY

);

27

CLEAR automatically detected the need to locate and decrypt the HMAC from the
header mode specified when encrypting above.

Important note: Failed HMAC authentication (during decryption) will result
in a failure to decrypt with and error message and null response output.

As can be seen from the above code examples, including an HMAC solely requires
switching to a different operating mode during encryption (whether string, file or stream).
Decrypting requires no changes to code, as the header will indicate that an HMAC is
present. Since a header is required to utilize HMAC, one cannot use the feature in
Headerless mode.

FIPS Compliance

FIPS 140-2 (Federal Information Processing Standard 140-2) is a U.S. government
standard established by the National Institute of Standards and Technology (NIST) to
ensure the security and strength of cryptographic modules used in hardware and software
products.

The standard provides a rigorous set of requirements and guidelines for cryptographic
modules and their underlying algorithms to protect sensitive information. FIPS 140-2
validation is the process of testing and certifying a cryptographic module against the
FIPS 140-2 standard.

The validation is carried out by NIST-accredited Cryptographic Module Testing (CMT)
laboratories. Upon successful validation, the tested product is added to the NIST’s
Cryptographic Module Validation Program (CMVP) list, indicating that the product is
compliant with FIPS 140-2 requirements.

FIPS 140-2 module validation for CLEAR Cryptosystem can be found here:

https://csrc.nist.gov/projects/cryptographic-module-validation-program/c

ertificate/3080

Key-wrapping is a technique used to protect cryptographic keys by encrypting them
with a strong key encryption algorithm. AES-256 (Advanced Encryption Standard
with 256-bit keys) is one of the approved algorithms for key-wrapping in FIPS 140-2.
Using key-wrapping can help extend compliance to non-validated cryptographic modules
by encapsulating sensitive key material within the secure boundaries of a FIPS 140-2
validated module.

By following this approach, the sensitive key material remains protected by the FIPS
140-2 validated module, and the non-validated module only handles encrypted (wrapped)
keys, thereby extending a level of FIPS 140-2 compliance to the non-validated module.
However, it is crucial to note that this strategy does not make the non-validated module
fully FIPS 140-2 compliant.

CLEAR is packaged with the Crypto-Compliance CCJ JAR as an optional-use accessory
to support total FIPS 140-2 compliance as a validated module. When added to the
classpath of CLEAR and executed in compliance mode, AES encryption is injected
into the inner core of the CLEAR encipherment process. Irrespective of the use of the
CCJ JAR, CLEAR applies AES-256 key-wrapping as a post-processing step whenever
executed in compliance mode.

28

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3080
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3080

Encrypting in Compliance Mode

Encrypting a String in Compliance mode is almost identical to encrypting in standard (ba-
sic) mode. To use Compliance mode during encryption, select SINGLE_JOB_SYSTEM_GEN_KEY_WITH_COMPLIANCE

for the mode selection.

CLEARResult encrypted = cs.encrypt(

"Hello world",

CLEAR.STRENGTH_512_BIT,

SingleJobEncryptionSysGenKeyMode.SINGLE_JOB_SYSTEM_GEN_KEY_WITH_COMPLIANCE

);

Important note: Encrypting with CLEAR in compliance mode will result
in the generation of a key format that is different to non-compliance modes.
In CLEAR File-based encryption, the difference is most easily recognizable
as being saved under a different file extension. E.g. “.ckey” versus “.ccom”
versus “.ccomf”. Please see the CLEAR-File SDK documentation for more
detail. In this case of CLEAR-String SDK, however; compliance-mode key
output is largely indistinguishable from non-compliance mode output.

The results from compliance operations cannot be directly observed. For this reason, it
is very important to take care and store keys in a location and such a way that their type
is remembered for future use. Keys made in compliance modes can only be decrypted
using decryption operations being run (similarly) in compliance mode.

Decrypting in Compliance Mode

Decrypting a String that was encrypted in CLEAR Compliance mode requires decryption
in compliance mode. Further, if CCJ JAR was used during the encryption process, it
must be used in the decryption process as well. Ciphertext encrypted with CCJ may
not be decrypted without CCJ, and vice versa.

CLEARResult decrypted = cs.decrypt(

encrypted.getCipherTextString(),

encrypted.getKeyMaterial(),

SingleJobDecryptionMode.SINGLE_JOB_KEY_WITH_COMPLIANCE

);

In contrast to HMAC decryption, for Compliance to decipher successfully, a separate
mode of SINGLE_JOB_KEY_WITH_COMPLIANCE must be supplied.

Note that you may combine HMAC with Compliance. Both encryption and decryption
will specify this combination of both modes operating at once.

Use SINGLE_JOB_SYSTEM_GEN_KEY_WITH_HMAC_AND_COMPLIANCE for encryption and decryption
with the inclusion of an HMAC while operating in FIPS-140-2 compliance mode.

29

4.3 Hyperkeys

HyperKey TM is CLEAR’s patented symmetric encryption and decryption key. But
so much more! While traditional keys solely contain the secret(s) needed for a given
cryptographic algorithm, a HyperKey allows the user to perform a variety of additional,
innovative functions directly within the key itself ! These currently include:

• Headers indicating the type of encryption performed to reduce the amount and
brittleness of code used for subsequent decryption.

• Storing a second-factor for multi-factor authentication (biometric, hardware or
other).

• Including access control lists, which combined with the MFA, allow for selective
encryption and decryption of portions of a resource or message.

• Randomizing the key layout to prevent tampering and even guessing the size of
the key in use.

• Validating the authenticity of a message with the inclusion of an embedded HMAC.

Key Layout

The following diagram conceptually depicts the areas of data allocated within a given
HyperKey. Note that this is not a formal specification of the fields within a hierarchy
(or even their actual ordering). Rather, the illustration below shows the types of data
stored within a given key. Since CLEAR will randomize the layout of a given key and
include both padding and checksum data, even generating a key with the same entropy
would lead to different result from invocation to invocation.

The various Operating Modes dictate which portions will be included in a given key.
For example, one of the HMAC modes must be selected during encryption to have that
segment included. Similarly, MFA must be specified at key creation to have that element
reside in a given head. Operating in Headerless mode will result in a key with solely key
material, padding and checksum elements. The default HyperKey will have the same
but also include the standard 8-byte header.

MFA and Access Controls

Multi-factor authentication pairs with access control lists (ACLs) in a HyperKey. A given
ACL specifies which portions of a message can be decrypted by which actors/principals.
These users or systems are identified by the MFA supplied in a given key.

For example, Alice has an ACL denoting that she can decrypt the portion of the document
relevant to Finance. Bob has an ACL indicating he can access Human Resources. Still
other portions of the same document would decrypt for anyone with the key. Alice and
Bob are identified by their MFA material passed in during decryption. CLEAR will mix

30

both the key material and the MFA to ensure that only the correct entity can decrypt a
given portion protected by access control.

Another use case for this capability would be to turn an untrusted third-party provider,
such as a Cloud SaaS provider, into a zero-trust environment. One could upload both
the HyperKey and encrypted data to AWS or Azure. As long as the data is protected by
ACLs and requires MFA, which the cloud provider would not possess, then decryption
cannot occur.

HMAC and Message Authenticity

All three key types (system-generated, user-generated and user-supplied) allow for the
addition of a hashed message authentication code (HMAC). During encryption, CLEAR
will simultaneously create a message digest or one-way hash of the plaintext content.
This hash is included within the key. During decryption, if an adversary has tampered
with the ciphertext, the library will emit an error that the hash no longer matches the
resulting cleartext. Using the various HMAC modes, you can guarantee the provenance
or authenticity of a given message. If the key itself is corrupted in any way, decryption
will also fail (this occurs in all CLEAR modes).

KeyTool

The CLEAR SDK comes bundled with both the cipher functionality described above
as well as a utility for generating and manipulating HyperKeys: KeyTool. You may
integreate KeyTool into scripts via the CLI or directly invoke its functionality via the
Java SDK. Let’s explore some code to interact with HyperKeys.

CLEARKeyTool keyTool = CLEAR.clearKeyTool();

String keyMaterial = keyTool.genKey(strength);

The above two lines of code have each: returned a thread-safe reference to KeyTool and
then used the same to generate a user-supplied key. One use case for invoking KeyTool
separately is to generate a standalone key apart from an encryption operation. As a
reminder, when one encrypts using a system-generated key, CLEAR will both encrypt
and return the resulting key. KeyTool provides a mechanism to generate keys without
the step of encryption. Now, let’s convert this key into a HyperKey.

CLEARKeyTool keyTool = CLEAR.clearKeyTool();

String keyMaterial = keyTool.genKey(strength);

byte[] mfaMaterial = ... // From a hardware token, biometric, etc.

String hyperKey = keyTool.createHyperKey(keyMaterial, mfaMaterial);

As you can see only two lines of code are required to promote a standard encryption key
into a HyperKey. The secret sauce? Mixing in a second factor (or multi-factor material)
into the key. CLEAR does not dictate the source of the MFA material. Examples include
a hardware token, such as a YubiKey, a source of quantum randomness, an image on a
user’s machine, a biometric from a fingerprint reader, or any other source for a second
factor of authentication. MFA plus a standard key yields a HyperKey. The MFA must
then be supplied during decryption as a parameter to successfully recover the cleartext.

31

Note that the original key can still be used without MFA. It is an implementa-
tion choice of the user whether to delete the original key and retain solely the
HyperKey or to keep both. Decryption using the HyperKey will fail unless
the proper MFA is supplied.

Generating a User Token

CLEAR does not directly use MFA within its access control lists (ACLs). Rather,
the MFA must first be converted to a User Token before being added to as an ACL.
Converting the raw MFA binary to a User Token requires a single line of code:

byte[] mfaMaterial; // Initialize from an external source

String userToken = keyTool.generateHyperKeyUserToken(mfaMaterial);

The resulting User Token on its own can be stored separately from the key. However,
the token is far more useful when creating and maniupating an access control list within
the HyperKey.

Access Control List - Concepts

A given ACL will contain two types of entry: an owner User Token and zero or more
delegate User Tokens. Each token is identified by the MFA originally supplied to create
it. Thus, assuming each MFA is unique to that user, only a given individual can unlock
or use the HyperKey.

Any entry within the ACL will allow the user to decrypt a given message. However,
each ACL has an optional ability to blind or redact portions of the plaintext from a
given user. Whereas one typically thinks of an ACL as granting access, the optional
blinds restrict portions of the message. As an example, one could have a document with
portions marked top secret, other portions secret and still others only confidential. A
given user may be able to see only part of a message using CLEAR’s blinding technology.

An owner has additional permissions beyond those held by other users in the ACL.
Owners specifically can add and remove other users, as well as specify which portions of
a message are blinded for a given user. CLEAR will designate the first user added to
an ACL as an owner. Only one owner can exist for a given key, and ownership cannot
be revoked or delegated to another user. (However, one can take the original, normal
key and add different MFA from another user, resulting in a separate HyperKey with
separate ownership).

32

Manipulating Access Control Lists

Let’s follow all the steps from the beginning and end with an owned HyperKey: from
obtaining a reference to KeyTool, generating a normal key, adding an owner and finally
an additional user to the HyperKey.

byte[] ownerMFAMaterial;

CLEARKeyTool keyTool = CLEAR.clearKeyTool();

String key = keyTool.genKey(5120);

String hyperKey = keyTool.createHyperKey(usk, ownerMFAMaterial);

byte[] userMFAMaterial;

String userToken = keyTool.generateHyperKeyUserToken(userMFAMaterial);

String updatedHyperKey = keyTool.addHyperKeyACL(

hyperKey, userToken, ownerMFAMaterial, 10, 20, 30, 45

);

The last line creates the user ACL apart from the owner’s. Note that the owner must
suppliy his or her own User Token to insert the ACL and hence prove ownership of
the overall HyperKey. The four arguments at the end of the method call represent
blinds. Each blind consists of a pair of integers, representing indices in the message. In
the example above, the first blind starts at index 10 and ends at position 20, whereas
the second blind affects bytes 30 to 45. As a reminder, blinds redact data rather than
granting access. For a text message, a blind would remove text. For a video feed, these
could denote x, y coordinates whereby images would not render in the feed.

Access Control List - CLI

One can also create a HyperKey and manipulate access control lists via CLEAR’s
command line interface. A principal use case for this functionality would be to script
or batch create keys for distribution across an enterprise without writing Java code or
performing encryption.

java -jar clear_2.1.1.5.jar -keytool

Typing the above will bring up CLEAR’s interactive KeyTool functionality. Each function
is invoked via a one letter shorthand command. The menu of available options will look
like the following:

33

--

CLEAR KEYTOOL - GENERATE / MANAGE CLEAR HYPER-KEYS

--

OPTIONS:

<S> - Create SYSTEM Generated RNG KEY - type the letter "S" and press <ENTER>

<U> - Create USER Generated RNG KEY - type the letter "U" and press <ENTER>

--

<H> - Create HYPER-KEY - Upgrades a standard CLEAR Key - type "H" press <ENTER>

<T> - Generate a USER-TOKEN - Shared ACL with others - type "T" press <ENTER>

<A> - Add USER - Incorporate User ACL into HyperKey - type "A" press <ENTER>

--

<C> - CANCEL, type the letter "C" and press <ENTER> or press <CTRL-C>

--

Select Function:

To exit the interactive mode, simply enter ”C” for Cancel or press ctrl-C. Operating
system redirects or a text input file can be used to automate the entry of commands.

4.4 Pluggable Random Number Generators

There are only relatively few publicly available Symmetric encryption ciphers in the world
today. The ones that can be consumed in Java are typically already included within the
Java Runtime Environment itself, made available for use by developers as part of the
Java Cryptography Extension (JCE) interface. One may also find encryption ciphers
online at “the legion of the bouncy castle”, via https://www.bouncycastle.org.

A common thread among the open-source symmetric ciphers is the way in which they
are instantiated programmatically. In many cases, user-level encryptions begin when an
operator generates some form of password or passphrase (and optional salt) that will
ultimately become their encryption key. The initialization sequence for most symmetric
ciphers (at least in the JCE) is one that requires an initialization vector (IV), a salt,
and a secret key. These implementations vary subtly by cipher; however, they typically
involve the programmatic generation of entropy of 256 bits or less.

As it happens, mishandling of the initialization-phase entropy (as mentioned above) is
one of the larger contributing factors to weakness in encryption implementations. For
example, it would not be AES-256 itself that provides a weakness (algorithmically);
rather, it is more frequently poor user implementation or hard-coding of a salt or IV
that introduces weakness into security systems. Key storage, secure vaulting, and proper
key-handling in symmetric encryption is extremely important.

Perhaps you are now asking yourself the question, “How can RNG produced by CSRNG
being considered ‘Quantum Strength’ in the CLEAR Cryptosystem?” If that is the case,
we’re going to get to the answer to that important question on the very next page.

Professional cryptanalysis and academic peer review applied to CLEAR over multiple
rounds and multiple years have conclusively come back with the same consistent results.

34

https://www.bouncycastle.org

”The length of the key material (‘key-space’) is mathematically equivalent to
the bit-strength of the encipherment.”

In other words, 512 bits of key material means definitive production of a 512-bit
encipherment.

Quantum-Computing and Keys

Grover’s Algorithm was developed in 1996 by Lou Grover as a mechanism for intended
for quadratic performance boost of searching through an unsorted database. Ostensibly,
an unintended consequence of Grover’s Algorithm was its ability to reduce the time
complexity of brute force attacks on round-reduced block ciphers.

With the utmost respect for the Advanced Encryption Standard (AES) and 256-bit
security (drafted in the late 1990’s and ratified by NIST in 2001), we are now looking at
the need for new solutions that can contend with computational factors that did not
exist when AES was created.

When CLEAR produces 512 bits of CSRNG as the “fuel” (and starting place) for its
encryption operation; the net result is encryption that can be measured at 512 bits of
security protection. As we together enter the next generation of cyber security challenges,
we are facing the power of qubit computers as well as the advancement of AI algorithms
that capable of round-reducing encryption ciphers.

Plug-n-Play Random Number Generator

OK – so the fate of your security rests in the hands of the Java Secure Random number
generator? No, definitely not. Certainly, the easiest way to use CLEAR is to run it
with as few parameters as possible and let the default onboard CSRNG do the work of
producing your initial entropy, the “fuel” for encryption. However, this alone does not
allow for the ultimate in flexibility.

We understand that enabling plug-and-play RNG is the best way to build trust and give
you full control over the input into your encryption jobs. An essential feature of CLEAR
is the ability to plug-in your own entropy source (random number generator). The “. . .
if you don’t like ours, use your own.” ethos is core to the way we see CLEAR being used
to guarantee absolute data privacy and true cybersecurity.

CLEAR has been constructed with one “built-in” plugin for external RNG, as well as an
open-SDK interface for adding RNG input from external sources. The built-in plugin
allows CLEAR to source entropy from a reputable online and open-source provider:
https://www.random.org.

CLEAR is also designed to work with external hardware-based random number generators.
Often referred to as “quantum random number generators” or “QRNG”, products such
as ID-Quantique4 may be directly integrated into CLEAR via localized USB connection
or on-a-chip (motherboard) type connection.

Programmatically, changing the random number generator in CLEAR can be done with
one simple line of code:

CLEAR.setPluggableRNG(

RandomNumberGenerator.RNG_CSPRING_SECURE_RANDOM,

apiKey

);

35

https://www.random.org

CLEAR supports the following options for plugging in an RNG implementation:

Method Purpose

RNG CSPRNG SECURE RANDOM CSpring RNG implementation

RNG QRNG ID QUANTIQUE USB BASED USB based quantum RNG

RNG QRNG ID QUANTIQUE ONBOARD CHIP BASED Chip based quantum RNG

RNG TRNG EXTERNAL PROVIDER External Traditional RNG provider

36

	Contents
	Preface

	Quick Start Guide
	Command-Line Interface
	SDK Integration
	License Configuration
	Understanding Keys
	Key Strengths
	System-Generated Keys
	User-Generated Keys
	User-Supplied Keys

	Inspecting Results
	Operating Modes
	String-Based Encryption
	File-Based Encryption
	Stream-Based Encryption

	Advanced Topics
	KeyTool and Access Control Lists
	Operating Modes
	Headerless Operation
	HMAC
	FIPS Compliance

	Hyperkeys
	KeyTool

	Pluggable Random Number Generators

